Hadronic Modeling of AGN Variability

Matthias Weidinger1 Felix Spanier2
1Theoretische Physik IV: Weltraum- und Astrophysik
2ITPA, Universität Würzburg
Jena 2013-02-25
Unified Model
The Emission of Blazars

Markarian 501 multifrequency campaign 2009\(^1\):

- typical double hump structure
- from radio to gamma-rays
- peak frequencies and flux levels vary

\(^1\)from Abdo et al. 2011
The Emission of Blazars

Markarian 501 multifrequency campaign 2009\(^1\):

- typical double hump structure
- from radio to gamma-rays
- peak frequencies and flux levels vary

MAGIC observations 2007\(^2\):

- short-time variability

\(^1\)from Abdo et al. 2011, \(^2\)from Albert et al. 2007
The Emission of Blazars

Markarian 501 multifrequency campaign 2009\(^1\):

- typical double hump structure
- from radio to gamma-rays
- peak frequencies and flux levels vary

MAGIC observations 2007\(^2\):

- short-time variability

PKS 2155-304 [Aharonian et al., ApJL 664 (2006)]

\(^1\)from Abdo et al. 2011, \(^2\)from Albert et al. 2007
The Debate

- optical to hard X-Ray peak: doppler enhanced synchrotron radiation
The Debate

- optical to hard X-Ray peak: doppler enhanced synchrotron radiation
- Low luminosity blazars (mostly BL Lacs): well described by the Synchrotron Self-Compton mechanism
The Debate

- optical to hard X-Ray peak: doppler enhanced synchrotron radiation
- Low luminosity blazars (mostly BL Lacs): well described by the Synchrotron Self-Compton mechanism
- High luminosity blazars (e.g. FSRQs): simple SSC fails, require:
 - compton upscattering of external photons
 - hadronic synchrotron radiation and subsequent cascades
The Debate

- optical to hard X-Ray peak: doppler enhanced synchrotron radiation
- Low luminosity blazars (mostly BL Lacs): well described by the Synchrotron Self-Compton mechanism
- High luminosity blazars (e.g. FSRQs): simple SSC fails, require:
 - compton upscattering of external photons
 - hadronic synchrotron radiation and subsequent cascades
- strongly dependent on the emitting site within the jet (within the broad line region or beyond)
Demands on the Model

Unbiased hybrid emission model

- allow for non-thermal leptons and hadrons to be relevant emitters in the jet
- determine dominating species during the modeling
Demands on the Model

Unbiased hybrid emission model

- allow for non-thermal leptons and hadrons to be relevant emitters in the jet
- determine dominating species during the modeling

Selfconsistency

- assume no input particle spectra
- particle spectra must arise from acceleration and cooling

Timedependency

- exploit the full information we get from blazar-emission
The Model I

Assume spherical emitting and acceleration region containing isotropic particle distributions and randomly orientated magnetic field in a nested setup:

Kinetic equation: acceleration zone

\[
\partial_t n_e = \partial_\gamma \left[(\beta_s \gamma^2 - t_{acc}^{-1} \gamma) \cdot n_e \right] + \partial_\gamma \left[\left((a + 2) t_{acc} \right)^{-1} \gamma^2 \partial_\gamma n_e \right] + Q_0 - t_{esc}^{-1} n_e
\]
The Model I

Assume spherical emitting and acceleration region containing isotropic particle distributions and randomly orientated magnetic field in a nested setup:

\[
\partial_t n_e = \partial \gamma \left[(\beta_s \gamma^2 - t_{acc}^{-1} \gamma) \cdot n_e \right] + \partial \gamma \left[\left((a + 2) t_{acc} \right)^{-1} \gamma^2 \partial \gamma n_e \right] + Q_0 - t_{esc}^{-1} n_e
\]

see M. Weidinger et al. 2010 for details
The Model I

Kinetic equation: radiation zone

\[
\partial_t N_e = \partial_\gamma \left[(\beta_s \gamma^2 + \gamma IC) \cdot N_e \right] + t_{esc}^{-1} n_e - t_{esc,N}^{-1} N_e
\]
The Model I

Kinetic equation: radiation zone

\[
\partial_t N_e = \partial \gamma \left[(\beta_s \gamma^2 + \dot{\gamma}_I C) \cdot N_e \right] + t_{\text{esc}}^{-1} n_e - t_{\text{esc},N}^{-1} N_e
\]

Photon distribution

\[
\partial_t N_{\text{ph}} = R_{\text{syn}} + R_{\text{IC}} - c\alpha_{\text{SSA}} N_{\text{ph}} - t_{\text{esc,ph}}^{-1} N_{\text{ph}}
\]

Selfconsistent SSC limit
see M. Weidinger & F. Spanier 2010 for details
The Model I

Kinetic equation:

\[\partial_t N_e = \partial \gamma \left[(\beta_s \gamma^2 + \dot{\gamma}_{IC}) \cdot N_e \right] + t^{-1} \text{esc}_e - t^{-1} \text{esc}_e N_e \]

Photon distribution:

\[\partial_t N_{\text{ph}} = R_{\text{syn}} + R_{\text{IC}} - c \alpha_{\text{SSA}} N_{\text{ph}} - t^{-1} \text{esc}_{\text{ph}} N_{\text{ph}} \]

Selfconsistent SSC limit:

\[\dot{\gamma}_{IC} = mc^3 \int_0^{\epsilon_{\text{max}}} d\epsilon_1 \epsilon_1 \int_0^{\infty} d\epsilon N_{\text{ph}}(\epsilon) \sigma(\epsilon_1, \epsilon, \gamma) \]

see M. Weidinger & F. Spanier 2010 for details
Hadronic Interactions

Unlike e^-, p^+ are not elementary particles \Rightarrow many interaction branches besides synchrotron (and IC) from primary e^- and p^+.

![Diagram showing interactions between e^- and IC: γ](image)
Unlike e^{-}, p^{+} are not elementary particles ⇒ many interaction branches besides synchrotron (and IC) from primary e^{-} and p^{+}.

photo meson production

Proton synchrotron

$p\gamma\ CS$ [Hüffer et al., ApJ 721 (2010)]
Hadronic Interactions

Unlike e^-, p^+ are not elementary particles \Rightarrow many interaction branches besides synchrotron (and IC) from primary e^- and p^+.

photo meson production *Bethe-Heitler pair prod.*

Proton synchrotron
Hadronic Interactions

Unlike e^-, p^+ are not elementary particles \Rightarrow many interaction branches besides synchrotron (and IC) from primary e^- and p^+.

photo meson production *Bethe-Heitler pair prod.*

Proton synchrotron
Hadronic Interactions

Unlike e^-, p^+ are not elementary particles \Rightarrow many interaction branches besides synchrotron (and IC) from primary e^- and p^+.

\begin{itemize}
 \item \textit{photo meson production}
 \item \textit{Bethe-Heitler pair prod.}
\end{itemize}

Proton synchrotron

\begin{itemize}
 \item $\gamma\gamma$ pair production
\end{itemize}
Hadronic Interactions

Unlike e^-, p^+ are not elementary particles ⇒ many interaction branches besides synchrotron (and IC) from primary e^- and p^+.

photo meson production

Proton synchrotron

$\gamma\gamma$ pair production
Hadronic Interactions

Unlike e^-, p^+ are not elementary particles \Rightarrow many interaction branches besides synchrotron (and IC) from primary e^- and p^+.

photo meson production

Proton synchrotron

Muon lifetime
Hadronic Contributions

$\pi^+ \rightarrow \mu^+ + \nu_\mu$ / $\overline{\nu}_\mu$

$\pi^0 \rightarrow \gamma + \gamma$

$\gamma + \gamma \rightarrow e^+ + e^-$ (e±-Synchrotronstr.)

Proton synchrotron emission must be relevant.

Requires $p^+ \gamma > \Delta$ to be present in the jet.

$\gamma \approx 10^7 - 10^9$
Hadronic Contributions

- e^{\pm}-synchrotron

 $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu} \rightarrow \pi_{0} \rightarrow \gamma + \gamma$

 Contribution

 Pair cascades with low ν photons

 $\gamma + \gamma \rightarrow e^{\pm} + e^{\pm}$ (e^{\pm}-Synchrotronstr.)

 Proton synchrotron emission must be relevant.

 Requires $p + \gamma > \Delta + E_{\text{photons}} \approx 10^7 - 10^9$ to be present in the jet.
Hadronic Contributions

- e^\pm-synchrotron

 $\pi^\pm \rightarrow \mu^\pm + \nu_\mu/\bar{\nu}_\mu \rightarrow$

 $e^\pm + \nu_e/\bar{\nu}_e + \bar{\nu}_\mu/\nu_\mu$

- $\pi^0 \rightarrow \gamma + \gamma$ contribution

Pair cascades with low ν photons

$\gamma + \gamma \rightarrow e^+ + e^-$

Proton synchrotron emission must be relevant

Requires $p^+\gamma > \Delta + E/\text{photons} \approx 10^7 - 10^9$ to be present in the jet.
Hadronic Contributions

- e^\pm-synchrotron
 $\pi^\pm \rightarrow \mu^\pm + \nu_\mu/\bar{\nu}_\mu \rightarrow$
 $e^\pm + \nu_e/\bar{\nu}_e + \bar{\nu}_\mu/\nu_\mu$

- $\pi^0 \rightarrow \gamma + \gamma$ contribution

- Pair cascades with low ν photons
 $\gamma + \gamma \rightarrow e^+ + e^-$
 (e^\pm-Synchrotronstr.)
Hadronic Contributions

- e^{\pm}-synchrotron
 \[\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu} \rightarrow e^{\pm} + \nu_{e}/\bar{\nu}_{e} + \bar{\nu}_{\mu}/\nu_{\mu} \]

- $\pi^{0} \rightarrow \gamma + \gamma$ contribution

- Pair cascades with low ν photons
 \[\gamma + \gamma \rightarrow e^{+} + e^{-} \]
 (e^{\pm}-Synchrotronstr.)

- Proton synchrotron emission must be relevant
Hadronic Contributions

- e^{\pm}-synchrotron
 $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_\mu/\bar{\nu}_\mu \rightarrow e^{\pm} + \nu_e/\bar{\nu}_e + \bar{\nu}_\mu/\nu_\mu$
- $\pi^0 \rightarrow \gamma + \gamma$ contribution
- Pair cascades with low ν photons
 $\gamma + \gamma \rightarrow e^+ + e^-$
 (e^{\pm}-Synchrotronstr.)
- Proton synchrotron emission must be relevant

Requires p^+ with $\gamma > \Delta^+/E_{\text{photons}} \approx 10^7 - 10^9$ to be present in the jet.
Hadronic Contributions

- e^\pm-synchrotron
 \[\pi^\pm \rightarrow e^\pm + \nu \]
 \[e^\pm + \nu \rightarrow e^\pm + \nu \]
- $\pi^0 \rightarrow \gamma + \gamma$
- Pair cascade with low ν photons
 \[\gamma + \gamma \rightarrow e^+ + e^- \] (e$^\pm$-Synchrotron)
- Proton synchrotron emission must be relevant

Requires p^+ with $\gamma > \Delta^+ / E_{\text{photons}} \approx 10^7 - 10^9$ to be present in the jet.
Now there are 4 **non-linear coupled** equations in the radiation zone:

Kinetic equations: radiation zone

\[
\begin{align*}
\partial_t N_{p^+} &= \partial_\gamma \left[\beta_p \gamma^2 \cdot N_{p^+} \right] + b^3 t^{-1}_{esc,p} n_{p^+} - t^{-1}_{esc,p,N} N_{p^+} \\
\partial_t N_{e^-} &= \partial_\gamma \left[(\beta_e \gamma^2 + \gamma_{IC}) \cdot N_{e^-} \right] + b^3 t^{-1}_{esc,e} n_{e^-} + Q_{pp} + Q_{p\gamma^-} - t^{-1}_{esc,e,N} N_{e^-} \\
\partial_t N_{e^+} &= \partial_\gamma \left[(\beta_e \gamma^2 + \gamma_{IC}) \cdot N_{e^+} \right] + Q_{pp} + Q_{p\gamma^+} - t^{-1}_{esc,e,N} N_{e^+}
\end{align*}
\]

Photon distribution

\[
\partial_t N_{ph} = R_{syn} + R_{IC} + R_{\pi^0} - c \left(\alpha_{SSA} + \alpha_{pp} \right) N_{ph} - t^{-1}_{esc,ph} N_{ph}
\]

- Kelner Aharonian parameterization of the SOPHIA Monte Carlo results is used to calculate \(Q_{p\gamma^-}, Q_{p\gamma^+}, R_{\pi^0}\) ⇒ no unstable intermediates \((\pi^\pm, \pi^0, \mu^\pm)\) taken into account
Now there are 4 non-linear coupled equations in the radiation zone:

Kinetic equations: radiation zone

\[
\begin{align*}
\frac{\partial}{\partial t} N_{p^+} &= \partial_\gamma \left[\beta_p \gamma^2 \cdot N_{p^+} \right] + b^3 t_{esc,p}^{-1} n_{p^+} - t_{esc,p,N}^{-1} N_{p^+} \\
\frac{\partial}{\partial t} N_{e^-} &= \partial_\gamma \left[(\beta_e \gamma^2 + \dot{\gamma}_{IC}) \cdot N_{e^-} \right] + b^3 t_{esc,e}^{-1} n_{e^-} + Q_{pp} + Q_{p\gamma^-} - t_{esc,e,N}^{-1} N_{e^-} \\
\frac{\partial}{\partial t} N_{e^+} &= \partial_\gamma \left[(\beta_e \gamma^2 + \dot{\gamma}_{IC}) \cdot N_{e^+} \right] + Q_{pp} + Q_{p\gamma^+} - t_{esc,e,N}^{-1} N_{e^+}
\end{align*}
\]

Photon distribution

\[
\frac{\partial}{\partial t} N_{ph} = R_{syn} + R_{IC} + R_{\pi^0} - c \left(\alpha_{SSA} + \alpha_{pp} \right) N_{ph} - t_{esc,ph}^{-1} N_{ph}
\]

- Kelner Aharonian parameterization of the SOPHIA Monte Carlo results is used to calculate \(Q_{p\gamma^-}, Q_{p\gamma^+}, R_{\pi^0} \Rightarrow \) no unstable intermediates \((\pi^\pm, \pi^0, \mu^\pm)\) taken into account

- Cascades will emerge in the optically thick regime \(> 10^{28} \) Hz
SSC limit

For small B-Fields and $Q_p \to 0$: SSC case, but selfconsistent

PKS 2155-30.4, $z = 0.117$
see M. Weidinger & F. Spanier 2010(I) for details

1 ES 1218+30.4, $z = 0.182$
see M. Weidinger & F. Spanier 2010(II) for details

Mkn501, $z = 0.034$
1 ES 1011

Intermediate frequency peaked BL Lac object @ z = 0.212

<table>
<thead>
<tr>
<th>Q₀ (cm⁻³)</th>
<th>B (G)</th>
<th>Rₐcc (cm)</th>
<th>R₉rad (cm)</th>
<th>tₐ/tₑ</th>
<th>δ</th>
<th>γ₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.50 · 10⁴</td>
<td>0.18</td>
<td>1.1 · 10¹⁴</td>
<td>8.0 · 10¹⁵</td>
<td>1.2</td>
<td>44</td>
<td>868</td>
</tr>
</tbody>
</table>
Intermediate frequency peaked BL Lac object @ $z = 0.212$

<table>
<thead>
<tr>
<th>Q_0 (cm$^{-3}$)</th>
<th>B (G)</th>
<th>R_{acc} (cm)</th>
<th>R_{rad} (cm)</th>
<th>t_a / t_e</th>
<th>δ</th>
<th>γ_0</th>
<th>Q_p (cm$^{-3}$)</th>
<th>γ_{0p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.55 \cdot 10^8$</td>
<td>8.0</td>
<td>$2.2 \cdot 10^{12}$</td>
<td>$1.8 \cdot 10^{15}$</td>
<td>1.3</td>
<td>36</td>
<td>3400</td>
<td>$3.8 \cdot 10^7$</td>
<td>600</td>
</tr>
</tbody>
</table>
Intermediate frequency peaked BL Lac object @ $z = 0.212$

<table>
<thead>
<tr>
<th>Q_0 (cm$^{-3}$)</th>
<th>B (G)</th>
<th>R_{acc} (cm)</th>
<th>R_{rad} (cm)</th>
<th>t_a/t_e</th>
<th>δ</th>
<th>γ_0</th>
<th>Q_p (cm$^{-3}$)</th>
<th>γ_{0p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.55 \cdot 10^8$</td>
<td>8.0</td>
<td>$2.2 \cdot 10^{12}$</td>
<td>$1.8 \cdot 10^{15}$</td>
<td>1.3</td>
<td>36</td>
<td>3400</td>
<td>$3.8 \cdot 10'$</td>
<td>600</td>
</tr>
</tbody>
</table>
Intermediate frequency peaked BL Lac object @ $z = 0.212$

<table>
<thead>
<tr>
<th>Q_0 (cm$^{-3}$)</th>
<th>B (G)</th>
<th>R_{acc} (cm)</th>
<th>R_{rad} (cm)</th>
<th>t_a/t_e</th>
<th>δ</th>
<th>γ_0</th>
<th>Q_p (cm$^{-3}$)</th>
<th>$\gamma_0 p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.55 \cdot 10^8$</td>
<td>8.0</td>
<td>$2.2 \cdot 10^{12}$</td>
<td>$1.8 \cdot 10^{15}$</td>
<td>1.3</td>
<td>36</td>
<td>3400</td>
<td>$3.8 \cdot 10^7$</td>
<td>600</td>
</tr>
</tbody>
</table>

Hadronic Modeling of AGN Variability Matthias Weidinger, Jena 2013-02-25
Outburst of 1 ES 1011

Injection of more primary e^- and p^+ for $\Delta t \approx 4$ h.
UHECRs

Fluxes of Cosmic Rays

Flux (m^2 s^-1 GeV^-1)

Energy (eV)

Galactic

Extragalactic

(1 particle per m^2-second)

Knee
(1 particle per m^2-year)

Ankle
(1 particle per km^2-year)
Conclusions and Outlook

- Fully selfconsistent hybrid emission model for blazars
- including electrons and protons as possible emitters
- modelling of many blazar “flavours” possible
Conclusions and Outlook

- Fully selfconsistent hybrid emission model for blazars
- including electrons and protons as possible emitters
- modelling of many blazar “flavours” possible
- Short-term variability as most important distinguishing feature
- between purely leptonic and hybrid jet composition.
- Systematic modeling brings new insight to the long-term variation in blazar spectra.
Conclusions and Outlook

- Fully selfconsistent hybrid emission model for blazars
- including electrons and protons as possible emitters
- modelling of many blazar “flavours” possible

- Short-term variability as most important distinguishing feature
- between purely leptonic and hybrid jet composition.
- Systematic modeling brings new insight to the long-term variation in blazar spectra.

- Blazars as possible production sites of UHECRs
- but - by far - not all.
- Of course highly dependent on acceleration mechanism
Conclusions and Outlook

- Fully selfconsistent hybrid emission model for blazars
 - including electrons and protons as possible emitters
 - modelling of many blazar “flavours” possible
- Short-term variability as most important distinguishing feature
 - between purely leptonic and hybrid jet composition.
- Systematic modeling brings new insight to the long-term variation in blazar spectra.

- Blazars as possible production sites of UHECRs
 - but - by far - not all.
- Of course highly dependent on acceleration mechanism

Consistent treatment of different blazars allows for multi-messenger interpretation of diffuse phenomena (i.e. neutrinos, cosmic rays)