AUTUMN COLLEGE ON PLASMA PHYSICS

5 - 30 September 2005

Collective Processes
in Dusty Plasma Crystals

I. Kourakis
Bochum University, Germany
Collective Processes in Dusty Plasma Crystals

Ioannis Kourakis
Ruhr Universität Bochum, Institut für Theoretische Physik IV,
Fakultät für Physik und Astronomie, D-44780 Bochum, Germany
E-mail: ioannis@tp4.rub.de
http://www.tp4.rub.de/~ioannis

Lecture Notes
Autumn College on Plasma Physics: Collective Processes
5 - 30 September 2005
Abdus Salam International Center for Theoretical Physics, Trieste, Italy

Synopsis

Plasmas, i.e. large ensembles of charged particles, consist a highly complex form of matter. From a fundamental point of view, a plasma is often modelled as a many-body system which is characterized by weak inter-particle (electrostatic) interactions (coupling). However, strongly-coupled charged particle configurations have recently been produced in laboratory, either by creating ultra-cold plasmas confined in a trap or by manipulating dusty plasmas in gas discharge experiments.

In this text, we aim at providing insight to the nonlinear aspects involved in the motion of charged dust grains in a one-dimensional plasma monolayer (crystal). Different types of collective excitations are reviewed, and characteristics and conditions for their occurrence in dusty plasma crystals are discussed, in a quasi-continuum approximation. Dust crystals are shown to support nonlinear kink-shaped supersonic solitary longitudinal excitations, as well as modulated envelope localized modes associated with longitudinal and transverse vibrations. Furthermore, the possibility for intrinsic localized modes (ILMs) – Discrete Breathers (DBs) – to occur is investigated, from first principles. The effect of mode-coupling is also briefly considered. The relation to previous results on atomic chains, and also to experimental results on strongly-coupled dust layers in gas discharge plasmas, is briefly discussed.

Keywords: Dusty (complex) plasmas, plasma crystals, solitons.
PACS numbers: 52.27.Lw, 05.45.Yv, 52.35.Sb
1 Introduction

Large ensembles of interacting charged particles (plasmas) occur in a wide variety of physical contexts, ranging from Space (solar plasmas, interplanetary matter in plasma state) and stellar environments (neutron stars, pulsars) to the Earth’s atmosphere (lightnings, magnetospheric phenomena, waves in the ionosphere, noctilucent clouds) and from thermonuclear fusion reactors (Tokamaks) and laboratory (discharge plasmas, laser plasmas) even down to household applications (discharge light bulbs). A plasma, which is typically modeled as a collection of electrons and positive ions, is a complex physical system characterized by rich dynamics, which includes numerous collective effects (linear oscillation modes, nonlinear waves), instabilities, etc.

Typical e-i plasmas are tacitly thought of as weakly-coupled systems, given the high temperature and low density values encountered in different natural plasma contexts [Balescu, 1988]. The strength of interparticle interactions is quantitatively expressed by the coupling parameter $\Gamma = e^2/(k_B T < r>)$, which represents the ratio of the average potential-to-kinetic energy of the charged particles; note that Γ increases (decreases) with density n (temperature T), since the mean interparticle distance $< r > \sim n^{-1/3}$ is defined as the Wigner-Seitz radius of an elementary particle sphere volume, viz. $4\pi r_{ WS}^3/3 = 1/n$ (k_B denotes the Boltzmann constant). For most e-i plasmas of interest in space and laboratory, Γ attains very low values ($\Gamma \sim 10^{-5} - 10^{-4} \ll 1$) justifying this weak-coupling hypothesis. However, strongly-coupled plasmas, so far thought to exist only in exotic environments (such as neutron stars), have recently been created in laboratory, e.g. ultra-cold plasmas of laser-cooled ions, in Penning traps and storage rings (see [Killian, 2004] and Refs. therein), which freeze at ultra-low temperatures ($T \ll 1^\circ \text{K}$) to form Wigner crystals, where Γ attains high values ($\Gamma > 170$ sets the theoretical crystallization limit [Ikezi, 1986]; values as high as $\Gamma \simeq 10^3 - 10^4$ are today observed in all of the systems mentioned here). A similar lattice ordering is exhibited by dusty plasmas (DP), produced during discharge plasma experiments; this exciting mesoscopic system will attract our attention in the following.

Dusty plasmas (or complex plasmas) consist of electrons e^- (mass m_e, charge $q_e = -e$), ions i^+ (mass m_i, charge $q_i = +Ze$) and massive ($M_d \simeq 10^9 m_p$, typically, where m_p is the proton mass), heavily charged ($Q_d = \pm Ze$, where $Z_d \simeq 10^3 - 10^4$, typically), micron-sized (typical diameter $10^{-2} - 10^{-2} \mu m$) defects, i.e. dust particulates d^- (or, less often, d^+). The presence of the latter modifies the plasma properties substantially [Verheest, 2001; Shukla & Mamun, 2002] and allows for new charged matter states, including liquid-like phases and even solid (quasi-crystalline) configurations [Shukla & Mamun, 2002; Morfill et al., 1999; Morfill et al., 2002], first realized independently by three experimental groups in 1994 [Chu & I, 1994; Hayashi & Tachibana, 1994; Thomas et al., 1994].

Dust quasi-lattices are typically formed in the sheath region above the negative electrode in discharge plasma experiments (see in [Morfill et al., 1997] for a review of the technical details and main results), and remain horizontally suspended at a levitated equilibrium position (at $z = z_0$, say) where gravity and electric (and/or magnetic [Yaroshenko, 2004]) forces mutually balance each other\(^1\). Typical lattice configurations include bcc, fcc and hcp patterns, consisting of roughly a dozen horizontal two-dimensional (2d) layers; simpler one-dimensional (1d) arrangements were also produced in laboratory, by applying appropriate confinement potentials [Misawa et al., 2001; Liu et al., 2003], and are thought to provide a basis for future applications.

From a fundamental point of view, these crystal-like structures are a most challenging physical system, since basic issues like the very nature of inter-particle interaction or the char-

\(^1\) It is worth mentioning that DP lattice experiments are also currently carried out in microgravity conditions, in the International Space Station; we shall not focus in this issue here.
acteristics of oscillation modes are still being questioned. It appears to be established that electrostatic interactions (typically thought to be of screened Coulomb, i.e. Debye-Hückel type) may be strongly modified by the supersonic ion flow towards the negative electrode and the proximity of the crystal to the latter [Ignatov, 2003; Kourakis & Shukla, 2003]. Damping mechanisms due to dynamical dust charging, in addition to dust-neutral and dust-ion collisions, are some of the issues to be taken into account in a realistic description of dust crystals [Shukla & Mamun, 2002]. Interestingly, the low frequencies involved in dust lattice dynamics allow for a visualization (and digital processing) of physical phenomena on the kinetic level, in view of the study e.g. of nonlinear oscillations and waves, phase space functions (mean values), phase transitions and non-equilibrium flows, to mention only a few [Merlino et al., 1997; Thompson et al., 1999; Melandsø & Bjerkmo, 2000; Morfill et al., 2002]. Furthermore, notions from atomic physics are thus efficiently simulated on a more familiar mesoscopic scale2, in an efficient (and cost affordable) manner [Maddox, 1994].

The linear regime of low-frequency dust grain oscillations in DP crystals, in the longitudinal (acoustic mode) and transverse (in-plane, shear mode as well as vertical, off-plane optical mode) direction(s), is now quite well understood. However, the nonlinear behaviour of DP crystals still remains mostly unexplored, and has lately attracted experimental [Melandsø, 1996; Nosenko et al., 2002; Nosenko et al., 2004] and theoretical interest [Melandsø, 1996; Ivlev et al., 2003; Kourakis & Shukla, 2004a; b; c; d; e].

In this paper, we shall focus on the nonlinear description of dust grain displacements in a dust crystal. Considering the horizontal (\(\sim \hat{x}\)) and vertical (off-plane, \(\sim \hat{z}\)) degrees of freedom, we shall review the various nonlinear dust grain excitations occurring in a 1d dust lattice. This paper reviews relevant (more technical) theoretical studies [Kourakis & Shukla, 2004b; c; d; e]; it complements recent experimental investigations of dust crystals [Nosenko et al., 2002; Nosenko et al., 2004] and may hopefully motivate future ones. Although the results presented herein refer to mesoscopic dust crystals, they can be applied in any one-dimensional strongly-coupled lattice configuration characterized by electrostatic interactions.

2 A one-dimensional dust lattice: the model

Let us consider a quasi-1d dust layer, here assumed of infinite size, composed from identical dust grains (equilibrium charge \(q\) and mass \(M\), both assumed constant for simplicity), located at \(x_n = n \, r_0\), \((n = 0, 1, 2, ...\)). The choice of (exact form for) both the particle interaction potential \(U_D(r)\) and the (anharmonic) vertical on-site potential \(\Phi(z)\) will be left open (to be determined).

The Hamiltonian is of the form

\[
H = \sum_n \left(\frac{1}{2} M \left(\frac{d \mathbf{r}_n}{dt} \right)^2 + U(r_{nm}) + \Phi_{\text{ext}}(\mathbf{r}_n) \right),
\]

where \(\mathbf{r}_n\) is the position vector of the \(n\)–th grain; \(U_{nm}(r_{nm}) \equiv q \, \phi(x)\) is a binary interaction potential function related to the electrostatic potential \(\phi(x)\) around the \(m\)–th grain, and \(r_{nm} = |\mathbf{r}_n - \mathbf{r}_m|\) is the distance between the \(n\)–th and \(m\)–th grains. The external potential \(\Phi_{\text{ext}}(\mathbf{r})\) accounts for the external force fields in which the crystal is embedded; in specific, \(\Phi_{\text{ext}}\) takes into account the forces acting on the grains (and balancing each other at equilibrium, ensuring

\[\text{The typical system size is of the order of a few centimeters or less, in laboratory, while inter-particle spacing may range below or even up to 1 millimeter; the Debye radius } \lambda_D \text{ is roughly of the same order. Dust particle temperature is approximately } 300 \text{ °K, i.e. room temperature!}\]
stability) in the vertical direction (i.e. gravity, electric and/or magnetic forces); for completeness, it might also include the confinement potential ensuring horizontal stability in experiments [Samsonov, 2002].

Figure 1: Dust grain vibrations in the longitudinal ($\sim \hat{x}$) and transverse ($\sim \hat{z}$) directions, in a 1d dust lattice.

2.1 2d equation of motion

Considering the motion of the n–th dust grain in both the longitudinal (horizontal, $\sim \hat{x}$) and the transverse (vertical, off-plane, $\sim \hat{z}$) directions (i.e. suppressing the transverse in-plane – shear – component, $\sim \hat{x}$; see Fig. 1), so that $r_n = (x_n, z_n)$, we have the 2d equation of motion

$$M \left(\frac{d^2 r_n}{dt^2} + \nu \frac{dr_n}{dt} \right) = -\sum_n \frac{\partial U_{nm}(r_{nm})}{\partial r_n} + F_{\text{ext}}(r_n) \equiv q E(r_n) + F_{\text{ext}}(r_n),$$

(1)

where $E_j(x) = -\partial \phi(x)/\partial x_j$ is the (interaction) electrostatic field and $F_{\text{ext},j} = -\partial \Phi_{\text{ext}}(r)/\partial x_j$ accounts for all external forces in the j-direction ($j = 1/2$ for $x_j = x/z$); the usual ad hoc damping term was introduced in the left-hand-side of Eq. (1), involving the damping rate ν due to dust–neutral collisions.

2.2 Anharmonic vertical substrate potential

Assuming a smooth, continuous variation of the levitation (electric E_{ext} and/or magnetic B_{ext}) field(s) and of the grain charge q (which varies due to charging processes) near the equilibrium position z_0, the electric and magnetic force(s) may be combined into an overall vertical force

$$F_{\text{ext}}(z) = F_{\text{el/m}}(z) - Mg = -\partial \Phi_{\text{ext}}(z)/\partial z \approx -M[\omega_g^2 \delta z_n + \alpha (\delta z_n)^2 + \beta (\delta z_n)^3] + O[(\delta z_n)^4]$$

(2)

($\delta z_n = z_n - z_0$) where the phenomenological substrate potential $\Phi_{\text{ext}}(z)$ is of the form

$$\Phi(z) \approx \Phi(z_0) + M \left[\frac{1}{2} \omega_g^2 \delta z_n^2 + \frac{\alpha}{3} (\delta z_n)^3 + \frac{\beta}{4} (\delta z_n)^4 \right] + O[(\delta z_n)^5].$$

(3)

Recall that $F_{\text{el/m}}(z_0) = Mg$ at equilibrium. The gap frequency ω_g and the phenomenological anharmonic coefficients α and β are defined via (derivatives of) E_{ext} and B_{ext} (see in [Kourakis & Shukla, 2004c; d] for the exact definitions).

The anharmonic potential $\Phi_{\text{ext}}(z)$ is depicted in Fig. 2, as it results from $ab\ initio$ calculations [Sorasio, 2002]. It may, in priciple, be provided by experiments; see, for instance, Fig. 3.
2.3 Discrete equations of motion

Let \((\delta x_n, \delta z_n) = (x_n - x_n^{(0)}, z_n - z_n^{(0)})\) denote the displacement of the \(n\)-th grain from the equilibrium position \((x_n^{(0)}, z_n^{(0)}) = (nr_0, 0)\). Assuming small displacements from equilibrium, one may Taylor expand the interaction potential energy \(U(r)\) around the equilibrium inter-grain distance \(r_{nm} = |n - m|r_0\) between \(l\)-th order neighbors, \(l = 1, 2, \ldots\), i.e. around \(\delta x_n \approx 0\) and \(\delta z_n \approx 0\), viz.

\[
U(r_{nm}) = \sum_{l'=0}^{\infty} \frac{1}{l'!} \left. \frac{d^{l'} U(r)}{dr^{l'}} \right|_{r = |n - m|r_0} (x_n - x_m)^{l'},
\]

where \(l' = 2\) denotes the potential parabolicity, \(l' = 3\) denotes cubic nonlinearity in the interaction, and so forth. Notice that the inter-grain distance

\[
r = [(x_n - x_m)^2 + (z_n - z_m)^2]^{1/2}
\]

also needs to be expanded near \(|x_n - x_m| = lr_0\) and \(z_n - z_m = 0\), viz.

\[
\frac{\partial U(r)}{\partial x_j} = \frac{\partial U(r)}{\partial r} \frac{\partial r}{\partial x_j} \approx \ldots
\]

Retaining only nearest-neighbor interactions \((l = 1)\), we obtain the coupled equations of motion

\[
\frac{d^2(\delta x_n)}{dt^2} + \nu \frac{d(\delta x_n)}{dt} = \omega_{0,L}^2 (\delta x_{n+1} + \delta x_{n-1} - 2\delta x_n)
\]

\[
- a_{20} \left[(\delta x_{n+1} - \delta x_n)^2 - (\delta x_n - \delta x_{n-1})^2 \right] + a_{30} \left[(\delta x_{n+1} - \delta x_n)^3 - (\delta x_n - \delta x_{n-1})^3 \right] + a_{02} \left[(\delta z_{n+1} - \delta z_n)^2 - (\delta z_n - \delta z_{n-1})^2 \right]
\]

\[
- a_{12} \left[(\delta x_{n+1} - \delta x_n)(\delta z_{n+1} - \delta z_n)^2 - (\delta x_n - \delta x_{n-1})(\delta z_n - \delta z_{n-1})^2 \right], \tag{4}
\]
Figure 3: The anharmonic potential $V(x)$ is depicted vs. the displacement x – see Eq. (3) – for two sets of values (corresponding to different particle size) from the Kiel experiment [Zafiu, 2001] (values adapted from Table I therein). Here, $\alpha' = \alpha r_0/\omega_0^2$ and $\beta' = \beta r_0^2/\omega_0^2$ are dimensionless parameters. The harmonic case ($\alpha' = \beta' = 0$) is also provided for reference. Note the existence of a finite potential barrier, possibly accounting for the dust crystal dissociation (“melting”) reportedly observed in experiments.

\[
\frac{d^2(\delta z_n)}{dt^2} + \nu \frac{d(\delta z_n)}{dt} = \omega_{0,T}^2 (2\delta z_n - \delta z_{n+1} + \delta z_{n-1}) - \omega_g^2 \delta z_n - \alpha (\delta z_n)^2 - \beta (\delta z_n)^3 + \frac{a_{02}}{r_0} (\delta z_{n+1} - \delta z_n)(\delta z_{n+1} - \delta z_{n-1})(\delta z_n - \delta z_{n-1})^3 + 2a_{02} (\delta x_{n+1} - \delta x_n)(\delta z_{n+1} - \delta z_n)(\delta x_n - \delta x_{n-1})(\delta z_n - \delta z_{n-1}) - a_{12} (\delta x_{n+1} - \delta x_n)(\delta z_{n+1} - \delta z_n)(\delta x_n - \delta x_{n-1})(\delta z_n - \delta z_{n-1})).
\]

The longitudinal and transverse oscillation characteristic frequencies $\omega_{0,L}$ and $\omega_{0,T}$, as well as the coupling nonlinearity coefficients a_{ij}, are defined via (derivatives of) the interaction potential $U(r)$; in principle, they are positive quantities (see in the Appendix for definitions and details); in particular, such is the case for the Debye potential $U_D(r) = (q^2/r) \exp(-r/\lambda_D)$ (where λ_D is the effective Debye charge screening length). Recall that ω_g, α and β are related to the (anharmonic) form of the sheath potential Φ. Typical frequency values are as low as: $\omega_{0,L} \simeq 30 - 60$ sec$^{-1}$ [Nunomura et al., 2002] (i.e. $f_{0,L} = \omega_{0,L}/2\pi \approx 5 - 10$ Hz!), $\omega_{0,T} \simeq 20$ sec$^{-1}$ and $\omega_g \simeq 160$ sec$^{-1}$ [Misawa et al., 2001], or even lower [Ivlev et al., 2000; Zafiu et al., 2001]. Typical values for the transverse nonlinearity coefficients may be derived from [Ivlev et al., 2000]3:

\[
\alpha/\omega_g^2 \simeq -0.5$ mm$^{-1} \quad \text{and} \quad \beta \simeq 0.07$ mm$^{-2}.
\]

Details on the derivation of Eqs. (4) and (5) can be found in [Kourakis & Shukla, 2004d].

As a general remark, retain that nonlinearity in dust grain dynamics in a crystals is induced by:

(a) electrostatic interactions (coupling),

(b) the plasma sheath environment (which imposes non-uniform electric/magnetic fields), and

(c) coupling between different directions of vibration (geometry).

3However, the strong variation from, e.g., [Zafiu et al., 2001] suggests that appropriate experiments still need to be carried out before one should attempt any predictions by relying on available values.
2.4 Continuum equations of motion

Adopting the standard *continuum approximation*, one may assume that only small displacement variations occur between neighboring sites, and replace the horizontal displacement \(\delta x_n(t) \) by a continuous function \(u = u(x,t) \). An analogous function \(w = w(x,t) \) is defined for \(\delta z_n(t) \). The discrete equations of motion (4) and (5) thus lead, after a long calculation [Kourakis & Shukla, 2004d], to a set of coupled continuum equations of motion in the form

\[
\ddot{u} + \nu \dot{u} - c_L^2 \frac{\partial^2}{\partial x^2} u_{xxxx} - \frac{c_T^2}{12} r_0^2 u_{xxxxx} = -2 a_{20} r_0^3 u_x w_x + 2 a_{02} r_0^3 w_x w_{xx} - a_{12} r_0^4 [(w_x)^2 u_{xx} + 2 w_x w_{xx} u_x] + 3 a_{30} r_0^4 (u_x)^2 u_{xx},
\]

(6)

\[
\ddot{w} + \nu \dot{w} + c_T^2 \frac{\partial^2}{\partial x^2} w_{xx} + \frac{c_T^2}{12} r_0^2 w_{xxxxx} + \omega_g^2 w = -\alpha w^2 - \beta w^3 + 2 a_{02} r_0^3 (u_x w_{xx} + w_x u_{xx}) + 3 a_{02} r_0^3 (w_x)^2 w_{xx} - a_{12} r_0^4 [(u_x)^2 w_{xx} + 2 u_x u_{xx} w_x],
\]

(7)

where higher-order nonlinear terms were omitted. We have defined the characteristic velocities \(c_L = \omega_{0,L} r_0 \) and \(c_T = \omega_{0,T} r_0 \); the subscript denotes partial differentiation, i.e. \((\cdot)_x \equiv \partial(\cdot)/\partial x\), so that \(u_x u_{xx} = (u_x^2)_x/2 \) and \((u_x)^2 u_{xx} = (u_x^3)_x/3\).

An exact treatment of the coupled evolution Eqs. (4), (5) – or, at least, the continuum system (6), (7) – seems quite a complex task to accomplish. Even though Eq. (6) may be seen as a Boussinesq–type equation, which is now modified by the coupling, its transverse counterpart (7) substantially differs from any known nonlinear model equation. Therefore, we shall limit ourselves to reporting this coupled system of evolution equations, keeping a thorough investigation (analytical and/or numerical) of their nonlinear regime for future work. The uncoupled continuum equations (obtained upon setting either \(u \) or \(w \) to zero) will be analyzed in the following.

3 Modulated Transverse Dust Lattice Waves (TDLWs)

Let us study the vertical (off-plane) \(n \)–th grain displacement (i.e. for \(\delta x_n = 0 \)), which obeys

\[
\frac{d^2 \delta z_n}{dt^2} + \nu \frac{d(\delta z_n)}{dt} + \omega_{T,0}^2 (\delta z_{n+1} + \delta z_{n-1} - 2 \delta z_n) + \omega_g^2 \delta z_n + \alpha (\delta z_n)^2 + \beta (\delta z_n)^3 = 0.
\]

(8)

Notice the difference in structure from the usual nonlinear Klein-Gordon equation used to describe 1d one-dimensional oscillator chains: transverse dust-lattice waves (TDLWs) propagating in this chain are stable *only* in the presence of the field force \(F_{e/m} \) (via \(\omega_g \)).

Linear transverse dust-lattice excitations, viz. \(\delta z_n \sim \cos \phi_n \) (here \(\phi_n = nkr_0 - \omega t \)) obey the *optical-like* discrete dispersion relation (setting \(\nu = 0 \))

\[
\omega^2 = \omega_g^2 - 4 \omega_{T,0}^2 \sin^2 \left(\frac{kr_0}{2} \right) \equiv \omega_T^2(k).
\]

(9)

The TDLW dispersion curve is depicted in Fig 4. Transverse vibrations therefore propagate as a *backward wave* [see that \(v_g,T = \omega_T^2(k)/k < 0 \)] – for any form of \(U(r) \) – in agreement with recent experiments [Misawa et al., 2001]. Notice that the frequency band is limited between
Figure 4: The dispersion relation of TDL vibrations – see Eq. Eq. (9): the frequency ω (normalized over ω_g) is depicted against the (reduced) wavenumber kr_0. The value of ω_0/ω_g (\sim inter-grain coupling strength) increases from top to bottom: $\epsilon \equiv \omega_0^2/\omega_g^2 = 0.016, 0.02, 0.051, 0.181$. The uppermost (lowermost) curve, i.e. for $\epsilon = 0.016$ (0.181, respectively) correspond to the the exact experimental data in [Misawa et al., 2001] ([Liu et al., 2003], respectively). The upper curve(s) is (are) more likely to favor gap breathers, since the breather frequency easily satisfies the existence condition (29).

$\omega_{T,\text{min}} = (\omega_g^2 - 4\omega_T^2)1/2$ (at $k = \pi/r_0$) and $\omega_{T,\text{max}} = \omega_g$, a feature which is absent in the continuum limit (viz. $\omega^2 \approx \omega_g^2 - \omega_0^2 k^2 r_0^2$, for $k \ll r_0^{-1}$).

Allowing for a slight departure from the small amplitude (linear) assumption, one may employ a multiple scale (reductive perturbation) technique to obtain, in the quasi-continuum limit [Kourakis & Shukla, 2004c], the solution:

$$\delta z_n \approx \epsilon (A e^{i\phi_n} + \text{c.c.}) + \epsilon^2 \alpha \left[-\frac{2|A|^2}{\omega_g^2} + \left(\frac{A^2}{3\omega_g^2} e^{2i\phi_n} + \text{c.c.} \right) \right] + \mathcal{O}(\epsilon^3).$$

Notice the generation of higher phase harmonics due to nonlinear self-interaction. The (modulated) amplitude A obeys a nonlinear Schrödinger (NLS) equation in the form:

$$i \frac{\partial A}{\partial T} + P_T \frac{\partial^2 A}{\partial X^2} + Q_T |A|^2 A = 0,$$

where $\{X, T\}$ are the slow variables $\{\epsilon(x - v_g L, t), \epsilon^2 t\}$. The dispersion coefficient P_T is related to the curvature of $\omega(k)$ as $P_T = \omega_T''(k)/2$ [to be readily computed from Eq. (9); cf. Fig. 4]. P is negative/positive for low/high values of k. The nonlinearity coefficient

$$Q_T = \frac{1}{2\omega_T} \left(\frac{10\alpha^2}{3\omega_g^2} - 3\beta \right)$$

may be deduced from experimental values of α and β; it turns out to be positive in (the few) known experiments on nonlinear vertical oscillation, to date [Ivlev, 2000; Zafiu, 2001].

The NLS Eq. (11) is generic: it is encountered in may physical contexts, and its behaviour has been studied since a few decades ago (see e.g. [Hasegawa, 1975; Remoissenet, 1994; Sulem, 1999]). Without going into too many details [Kourakis & Shukla, 2004c], let us summarize our current knowledge on modulational stability and localized solutions (transverse envelope

4 The coupling anharmonicity is omitted in the right-hand side of Eq. (8), for clarity.

5 The damping term is neglected in the following; for $\nu \neq 0$, an imaginary part appears, in account of damping, in both dispersion relation $\omega(k)$ and the resulting envelope equations.

6 i.e. assuming a continuum variation of the amplitude, but keeping the carrier oscillation discreteness.
solitons) of Eq. (11), in the context of interest to us. In general, for $P_T Q_T < 0$, i.e. in our case (taking $Q_T > 0$) for long wavelengths $\lambda = 2\pi/k > 2\pi/k_{cr}$, or small wavenumbers $k < k_{cr}$ [where k_{cr} is the zero-dispersion-point (ZDP), defined by $\omega''(k_{cr}) = 0$], TDLWs will be modulationally stable (see in the following paragraph for details), and may propagate in the form of dark/grey envelope excitations (hole solitons or voids; see Fig. 5). On the other hand, for $P_T Q_T > 0$, i.e. here for $k > k_{cr}$ (shorter wavelengths $\lambda < 2\pi/k_{cr}$ in the first Brillouin zone), modulational instability may lead to the formation of bright (pulse) envelope solitons (see Fig. 6). Analytical expressions for these excitations can be found in [Kourakis & Shukla, 2004c], and in relevant literature [Fedele et al., 2002a; b]; these expressions are briefly summarized in the following, for clarity.

Let us note that the modulation of transverse dust grain oscillations clearly appears in numerical simulations; see e.g Fig. 9a in [Sorasio, 2002].

4 Brief Intermezzo: Modulational Instability and Soliton Solutions of the NLS Eq. (11)

For the sake of clarity, we may briefly review some of the known results on the generic NLS Equation (11). We shall denote $A = \psi$, and will drop the index T, for brevity.

4.1 Modulational (in)stability analysis

It is known (see e.g. in [Hasegawa, 1975; Remoissenet, 1994]) that the evolution of a wave whose amplitude obeys Eq. (11) depends on the coefficient product PQ, which may be investigated in
terms of the physical parameters involved. To see this, first check that Eq. (11) supports the plane (Stokes') wave solution
\[\psi = \psi_0 \exp(iQ|\psi_0|^2T). \]

The standard linear analysis consists in perturbing the amplitude by setting:
\[\psi_0 = \hat{\psi}_0 + \epsilon \hat{\psi}_1, \]
where \(\epsilon \) is a small parameter. One thus obtains the (perturbation) dispersion relation:
\[\tilde{\omega}^2 = P \tilde{k}^2 (P\tilde{k}^2 - 2Q|\hat{\psi}_1|^2). \]

One immediately sees that if \(PQ > 0 \), the amplitude \(\psi \) is unstable for \(\tilde{k} < \sqrt{2Q/P}|\hat{\psi}_1| \); i.e. for perturbation wavelengths larger than a critical value. If \(PQ < 0 \), the amplitude \(\psi \) will be stable to external perturbations. This modulational instability mechanism is tantamount to the well-known Benjamin-Feir instability, in hydrodynamics, and is also long recognized as an energy localization mechanism in solid state physics and nonlinear optics [Hasegawa, 1975; Remoissenet, 1994].

This type of analysis allows for a numerical investigation of the stability profile in terms of the carrier wave number \(k \), in addition to the physical parameters involved in the problem under investigation.

4.2 Envelope excitations

The evolution equation (11) is known to be integrable; see e.g. in [Infeld & Rowlands, 1990; Remoissenet, 1994] for a presentation of the related theory. Its localized solutions, which can be rigorously obtained via the tedious Inverse Scattering Transform method, are properly speaking solitons, in the sense that they satisfy an infinity of conservation laws; they have been shown analytically (and confirmed numerically) to survive collisions between one another and also exhibit a robust behaviour against external perturbations.

The modulated wave resulting from the above analysis is of the form \(\psi = \epsilon \hat{\psi}_0 \cos(kr - \omega t + \Theta) + O(\epsilon^2) \), where the slowly varying amplitude \(\hat{\psi}_0 \) and phase correction \(\Theta \) (both real functions of \(\{X, T\} \)) are determined by (solving) Eq. (11) for \(\psi = \psi_0 \exp(i\Theta) \); see in [Fedele et al., 2002a; b] for details. Some of the different types of solution thus obtained are summarized in the following.

Bright-type envelope solitons. For positive \(PQ \), the carrier wave is modulationally unstable; it may either collapse, due to (possibly random) external perturbations, or lead to the formation of bright envelope modulated wavepackets, i.e. localized envelope pulses confining the carrier (see Fig. 6):

\[\psi_0 = \left(\frac{2P}{QL^2} \right)^{1/2} \text{sech} \left(\frac{X - v_e T}{L} \right), \quad \Theta = \frac{1}{2P} \left[v_e X + \left(\Omega - \frac{v_e^2}{2} \right) T \right] \]

[Fedele et al., 2002a; b]\(^8\), where \(v_e \) is the envelope velocity; \(L \) and \(\Omega \) represent the pulse's spatial width and oscillation frequency (at rest), respectively. We note that \(L \) and \(\psi_0 \) satisfy

\(^7\)In fact, the potential correction amplitude here is \(\hat{\psi}_0 = 2\hat{\psi}_0 \), from Euler’s formula: \(e^{ix} + e^{-ix} = 2 \cos x \ (x \in \mathbb{R}) \).

\(^8\)These expressions are readily obtained from [Fedele et al., 2002a; b], by shifting the variables therein to our notation as: \(x \rightarrow X, \ s \rightarrow T, \ \rho_m \rightarrow \rho_0, \ \alpha \rightarrow 2P, \ q_0 \rightarrow -2PQ, \ \Delta \rightarrow L, \ E \rightarrow \Omega, \ V_0 \rightarrow u. \)
\[L\psi_0 = (2P/Q)^{1/2} \text{ is constant (in contrast with KdV solitons (see below), where } L^2\psi_0 = \text{const.} \text{ instead). Also, the amplitude } \psi_0 \text{ is independent of the pulse (envelope) velocity } v_e \text{ here.} \]

It may be pointed out that the bright (envelope) soliton phase bears a (slow) space and time dependence, thus allowing for a slight deformation of the wave packet internal structure as it propagates, whereas its envelope profile remains constant; see e.g. Fig. 7, where this effect is pointed out.

\[\text{Figure 7: Bright envelope soliton propagation, at different times } t_1 < \cdots < t_5 \text{ (arbitrary parameter values). See that, contrary to Fig. 6a (where } L \gg \lambda), \text{ the envelope width here is comparable in order of magnitude to the carrier wavelength. Also notice the variation in internal structure, due to the (slow) phase variation in time.} \]

Black-type envelope solitons. For \(PQ < 0 \), the carrier wave is modulationally stable and may propagate as a dark (black or grey) envelope wavepackets, i.e. a propagating localized hole (a void) amidst a uniform wave energy region. The exact expression for dark envelopes reads:

\[
\psi_0 = \psi'_0 \left| \frac{\tanh(X - v_e T)}{L'} \right|, \quad \Theta = \frac{1}{2P} \left[v_e X + (2PQ\psi''_0)^2 - \frac{v_e^2}{2} \right] \tag{15}
\]

[Fedele et al., 2002a; b]; see Fig. 5a. Again, \(L'\psi'_0 = (2|P/Q|)^{1/2} (=\text{cst.}) \).

Grey-type envelope solitons. The grey-type envelope (also obtained for \(PQ < 0 \)):

\[
\psi_0 = \psi''_0 \left[1 - d^2 \text{sech}^2 \left(\frac{X - v_e T}{L''} \right) \right]^{1/2},
\]

and

\[
\Theta = \frac{1}{2P} \left[\frac{V_0 X - \left(\frac{1}{2} V_0^2 - 2PQ\psi''_0^2 \right) T + \Theta_0}{1 - d^2 \text{sech}^2 \left(\frac{X - v_e T}{L''} \right)} \right]^2. \tag{16}
\]

Here \(\Theta_0 \) is a constant phase; \(S \) denotes the product \(S = \text{sign}(P) \times \text{sign}(v_e - V_0) \). The pulse width \(L'' = (|P/Q|)^{1/2}/(d\psi''_0) \) now also depends on the real parameter \(d \), given by:

\[d^2 = 1 + (v_e - V_0)^2/(2PQ\psi''_0^2) \leq 1. \]
The (real) velocity parameter $V_0 = \text{const.}$ satisfies [Fedele et al., 2002a; b]8:

$$V_0 - \sqrt{2|PQ|\psi_0^2} \leq v_e \leq V_0 + \sqrt{2|PQ|\psi_0^2}.$$

For $d = 1$ (thus $V_0 = v_e$), one recovers the dark envelope soliton.

5 Longitudinal Envelope Excitations

The purely longitudinal dust grain displacements $\delta x_n = x_n - nr_0$ (i.e. for $\delta z_n = 0$) are described by the nonlinear equation of motion:

$$d^2(\delta x_n)\over dt^2 + \nu d(\delta x_n)\over dt = \omega_{0,L}^2 \left(\delta x_{n+1} + \delta x_{n-1} - 2\delta x_n\right) - a_{20} \left[(\delta x_{n+1} - \delta x_n)^2 - (\delta x_n - \delta x_{n-1})^2\right] + a_{30} \left[(\delta x_{n+1} - \delta x_n)^3 - (\delta x_n - \delta x_{n-1})^3\right], \quad (17)$$

This is reminiscent of the equation of motion in an atomic chain with anharmonic springs, that is the celebrated FPU (Fermi-Pasta-Ulam) problem (see e.g. in [Remoissenet, 1994] and Refs. therein).

The resulting linear mode obeys the acoustic dispersion relation:

$$\omega^2 = 4\omega_{L,0}^2 \sin^2 \left(\frac{kr_0}{2}\right) \equiv \omega_L^2(k) \quad (18)$$

(we take $\nu = 0$ again here). The longitudinal dust-lattice wave (LDLW) dispersion curve is depicted in Fig 8.

![Figure 8: The longitudinal dust-lattice wave (LDLW) dispersion relation; cf. Eq. (18): frequency ω_L (normalized by $\omega_{L,0}$) vs. reduced wavenumber kr_0 (solid curve). We have also depicted: the continuous approximation (dashed curve) and the acoustic curve (tangent at the origin).](image)

The multiple scale technique (cf. above) now yields the solution

$$\delta x_n \approx \epsilon [u^{(1)}_0 + (u^{(1)}_1 e^{i\phi_n} + \text{c.c.}) + \epsilon^2 (u^{(2)}_2 e^{2i\phi_n} + \text{c.c.}) + ... \quad (19)$$

($\phi_n = nkr_0 - \omega t$); note the appearance (to order $\sim \epsilon$) of a zeroth-harmonic mode, describing a constant (center of mass) displacement in the chain. The 1st-order amplitudes obey the coupled equations [Kourakis & Shukla, 2004b]:

$$i \frac{\partial u^{(1)}_1}{\partial T} + P_L \frac{\partial^2 u^{(1)}_1}{\partial X^2} + Q_0 |u^{(1)}_1|^2 u^{(1)}_1 + \frac{p_0 k^2}{2\omega_L} u^{(1)}_1 \frac{\partial u^{(1)}_0}{\partial X} = 0, \quad (20)$$

$$\frac{\partial^2 u^{(1)}_0}{\partial X^2} = -\frac{p_0 k^2}{v_g^2\omega_L^2} \frac{\partial}{\partial X} (|u^{(1)}_1|^2), \quad (21)$$

12
where $v_{g,L} = \omega'_L(k)$; \{X, T\} are the slow variables \{\epsilon(x - v_{g,L}t), \epsilon^2t\}. The coefficients p_0 and q_0 are related to quadratic and cubic force nonlinearities (i.e. $p_0 \sim U'''(r_0)$ and $q_0 \sim U''''(r_0)$; see in the Appendix). Eqs. (20), (21) may be combined into a closed equation (for given, i.e. vanishing or constant, conditions at infinity), which is identical to Eq. (11) (setting $A \rightarrow u_1^{(1)}$ and $T \rightarrow L$ in the subscript, therein). Now, $P_L = \omega''_L(k)/2 < 0$ [to be computed from Eq. (18); cf. Fig. 8], so the form of $Q_L > 0$ (< 0) prescribes stability (instability) at low (high) k; see in [Kourakis & Shukla, 2004b] for details. The existence of the zeroth mode now results in an asymmetric form of the envelope excitations now obtained, namely rarefactive bright or compressive dark envelope structures; see Figs. 9, 10. In specific, in order to obtain the exact expressions for the excitations depicted in these figures, one may combine Eqs. (20) and (21) into a closed NLS Eq. in the form of Eq. (11) (for $A = u_1^{(1)}$), solve it (cf. above), and then substitute into (21) for $u_0^{(1)}$; the exact formulae thus obtained can be found in [Kourakis & Shukla, 2004b] and are therefore omitted here, for brevity.

Figure 9: Bright LDL (asymmetric) envelope solitons: (a) the zeroth (pulse) and first harmonic (kink) amplitudes; (b) the resulting asymmetric wavepacket.

Figure 10: Dark LDL (asymmetric) modulated wavepackets of the (a) grey and (b) black type.

6 Longitudinal Solitons

Recall the (FPU) equation of motion (17), which describes the longitudinal motion of charged grains in our crystal. Inspired by methods of solid state physics, one may opt for a continuum description at a first step, viz. $\delta x_n(t) \rightarrow u(x, t)$. This may lead to different nonlinear evolution equations (depending on one’s simplifying assumptions), some of which are critically discussed in [Kourakis & Shukla, 2004a]. What follows is a summary of the lengthy analysis carried out therein.

The continuum variable u obeys Eq. (6), setting $w = 0$ therein, i.e.

$$\ddot{u} + \nu \dot{u} - c_L^2 u_{xx} - \frac{c_L^2}{12} r_0^2 u_{xxxx} = -p_0 u_x u_{xx} + q_0 (u_x)^2 u_{xx},$$

(22)
where the subscript denotes partial differentiation: \(c_L = \omega_{L,0} r_0 \); \(p_0 \) and \(q_0 \) are as defined above.

6.1 KdV vs. extended KdV equations

Assuming near-sonic propagation (i.e. \(v_{\text{sol}} \approx c_L \)), one obtains from Eq. (22) the Korteweg-deVries (KdV) equation

\[
w_x - s a w w_\zeta + b w_{\zeta\zeta\zeta} = 0 ,
\]
(23)

(for \(\nu = 0 \)) in terms of the relative displacement\(^9\) \(w = u_\zeta \); here \(\zeta = x - v_{\text{sol}} t \); also, \(a = |p_0|/(2c_L) > 0 \) and \(b = c_L r_0^2/24 > 0 \), while \(s \) is the sign of \(p_0 \), i.e. \(s = p_0/|p_0| = \pm 1 \). See that only the lowest (quadratic) order in force nonlinearity is retained here [i.e. \(a \sim U''(r_0) \)].

Since the original work of Melandsø [1996], who first derived and analyzed Eq. (23) for lattice waves in Debye crystals, various studies have relied on the (abundant pre-existing knowledge on the) KdV equation\(^10\) in order to describe the compressive structures subsequently sought and indeed observed in experiments [Nosenko et al., 2002; Nosenko et al., 2004]. Indeed, the KdV Eq. (23) possesses the (negative only here, since \(a > 0 \) in Debye crystals) supersonic pulse (single-)soliton solutions for \(w \), in the form

\[
w(\zeta, \tau) = -s w_m \text{sech}^2 \left[(\zeta - v_\tau - \zeta_0)/L_0 \right],
\]
(24)

where \(\zeta_0 \) and \(v \) are arbitrary real constants. A qualitative result to be retained is the velocity dependence of both soliton amplitude \(w_{1,m} \) and width \(L_0 \), viz.

\[
w_m = 3v/a = 6vc_L/|p_0|, \quad L_0 = (4b/v)^{1/2} = |c_L/(6v)|^{1/2} r_0.
\]

We see that \(w_mL_0^2 = \text{constant} \), implying that narrower/wider solitons are taller/shorter and faster/slower. These qualitative aspects have recently been confirmed by dust-crystal experiments [Samsonov, 2002].

Inverting back to the displacement variable \(u(x, t) \), one obtains the “anti-kink” solitary wave form

\[
u(x, t) = -s u_m \tanh \left[(x - v_{\text{sol}} t - x_0)/L_1 \right],
\]
(25)

which represents a propagating localized region of compression. The amplitude \(u_m \) and the width \(L_1 \) of this shock excitation are

\[
u_m = \frac{c_Lr_0}{|p_0|} \left[6 c_L (v_{\text{sol}} - c_L) \right]^{1/2}, \quad L_1 = r_0 \left[\frac{c_L}{6 (v_{\text{sol}} - c_L)} \right]^{1/2} = \frac{c_L^2 r_0^2}{|p_0|} \frac{1}{u_m},
\]

imposing ‘supersonic’ propagation \((v_{\text{sol}} > c_L) \) for stability, in agreement with experimental results in dust crystals [Samsonov, 2002]. Note that \(c_L \) in real DP crystals is as low as a few tens of mm/sec [Samsonov, 2002; Nosenko, 2002].

Here is an important point to be made. Notice that \(s = +1 \) (i.e. \(p_0 > 0 \)) if pure Debye interactions are considered (see in the Appendix). Therefore, according to the above description, the (negative pulse, for \(s = +1 \)) KdV soliton \(w \) is interpreted as a compressive density variation in the crystal (see Fig. 11), viz. \(n(x, t)/n_0 \sim -\partial u/\partial x \equiv -w > 0 \). However, although laser

\(^9\)The definition of the variable \(w \) here should obviously be distinguished from (and should not be confused with) the one in Eq. (7) above.

\(^10\)The N-soliton solutions \(w_N \) of (23) are known to satisfy an infinite set of conservation laws [Karpman, 1975; Drazin, 1989]; in particular, \(w_N \) carry a constant ‘mass’ \(M \sim \int w \text{d} \zeta \) (which is negative for a negative pulse), ‘momentum’ \(P \sim \int w^2 \text{d} \zeta \), ‘energy’ \(P \sim \int (w^2/2 + v^3) \text{d} \zeta \), and so forth (integration is understood over the entire \(x \)-axis); see e.g. Ch. 8 in [Davydov, 1985]; also [Drazin, 1989] and Refs. therein.
triggering of compressive pulses seems easier to realize in the lab, nothing a priori excludes the existence of rarefactive longitudinal excitations in dust crystals, a question which remains open for future experiments. This apparent contradiction may be raised by a more sophisticated theory, as we shall see in the following [Kourakis & Shukla, 2004d].

![Figure 11: Localized antikink (negative pulse) solutions, as obtained from the KdV Eq. (23), for the displacement $u(x,t)$ (relative displacement $w(x,t) \sim \partial u(x,t)/\partial x$), for positive p_0, i.e. $s = +1$ (for Debye interactions); $v = 1$ (solid curve), $v = 2$ (long dashed curve), $v = 3$ (short dashed curve).](image1)

Let us see what happens if higher order nonlinearity is also kept in the description. One thus obtains the extended KdV (eKdV) equation

$$w_\tau - a w w_\zeta + \hat{a} w^2 w_\zeta + bw_{\zeta\zeta\zeta} = 0,$$

where the extra coefficient $\hat{a} = q_0/(2c_L) > 0$ is related to cubic force nonlinearities [i.e. $\hat{a} \sim U'''(r_0)$]. Contrary to Eq. (23), the eKdV Eq. (26) possesses both negative and positive pulse solutions (solitons) for w, thus yielding positive and negative kink-shaped excitations for the displacement $u = \int wdx$; see in [Kourakis & Shukla, 2004d] for details and analytical expressions.

It is straightforward to check that $\hat{a} \simeq 2a$ roughly, in a real Debye crystal (for $\kappa \approx 1$). We thus draw the conclusion that the KdV approach is not sufficient. Instead, one should rather employ the extended KdV description, which accounts for both compressive and rarefactive lattice excitations (cf. Fig. 12), sharing the same qualitative features as its simpler KdV counterpart.

![Figure 12: Solutions of the extended KdV Eq. (for $q_0 > 0$; dashed curves) vs. those of the KdV Eq. (for $q_0 = 0$; solid curves): (a) relative displacement u_x; (b) grain displacement u.](image2)
6.2 Boussinesq and Generalized Boussinesq equations

As an alternative to the approach presented in the previous paragraph, Eq. (22) can be reduced to a Generalized Boussinesq (GBq) Equation

\[\ddot{w} - v_0^2 w_{xx} = h w_{xxxx} + p (w^2)_{xx} + q (w^3)_{xx} \]

(w = u_x; p = −p_0/2 < 0, q = q_0/3 > 0). For q ~ q_0 = 0, one recovers the Boussinesq (Bq) equation, widely studied in atomic chains (and hydrodynamics, earlier). As physically expected, the GBq (Bq) equation yields, like its eKdV (KdV) counterpart, both compressive and rarefactive (only compressive, respectively) solutions; however, the (supersonic) propagation speed v now does not have to be close to the sound velocity c_L (as in the KdV/eKdV cases). In any case, all of the above theories share a qualitative soliton feature, namely the decrease of the soliton width for higher velocity: the faster the soliton, the narrower it is; see Fig. 13 (also cf. Fig. 11).

A detailed comparative study of (and analytical expressions for) these soliton excitations (omitted since too lengthy to reproduce here) can be found in [Kourakis & Shukla, 2004a].

Figure 13: The (reduced) soliton length L/r_0 is depicted vs. the soliton Mach number M = v/c_0, as results from the GBq and the EKdV theories: lower (short-dashed) and upper (long-dashed) curves, respectively. The right figure depicts the near-sonic region, i.e. near M = 1, where the two theories practically coincide.

7 Intrinsic Localized Modes

Increasing interest has been manifested in the last decade in highly localized periodic nonlinear excitations occurring in discrete lattices; these Intrinsic Localized Modes (ILMs) were later termed Discrete Breathers (DBs), due to their “breathing” oscillatory character; their form reads:

\[u_n(t) = \sum_{k=\infty}^{\infty} A_{n,k} \exp(i k \omega t), \]

where one assumes A_{n,k} = A_{n,k}^* (-k) for reality and |A_{n,k}| → 0 as n → ±∞, for localization. Thanks to the substrate or coupling nonlinearity (which induces an amplitude-dependence in the oscillation frequencies) and to the crystal discreteness (resulting in a finite phonon frequency band), DBs have been proved (and, lately, experimentally confirmed, in various systems) to be remarkably long-lived and robust, with respect to external perturbations; see in [Campbell et al., 2004] for an introductory level review; also see [Flach & Willis, 1998] for a more exhaustive account. One might therefore naturally anticipate the existence of DBs in a dust crystal, which is intrinsically gifted with the two ingredients of the recipe: discreteness and nonlinearity.
Following the pioneering analytical and numerical considerations of ILM existence due to coupling anharmonicity (in discrete FPU chains) by Sievers, Takeno, Page and coworkers [Sievers & Takeno, 1988; Takeno & Sievers, 1988; 1989; Page, 1990] presented in the late 1980’s (also see [Kiselev et al., 1995; Bickham et al., 1997] for a review), the existence of DB modes has been rigorously proven in the past, for a wide class of nonlinear discrete lattices. Two main axes of proof have been suggested so far, namely: (i) the analytic continuation from the uncoupled (“anti-continuous”) limit to a weakly interacting oscillator chain [MacKay & Aubry, 1994; Aubry, 1997], and (ii) the relation of DB existence to (intersection points of) the homoclinic orbits in the phase space defined by the Fourier component amplitudes \{A_{nk}\} [Flach, 1995] (also see [Bountis, 2000]). As a matter of fact, (i) supposes (and depends on) the existence of nonlinear oscillatory solutions in the anti-continuous limit, and is thus applicable only in systems where nonlinearity is induced by an anharmonic on-site (substrate) potential, and where linear waves obey an optical dispersion law (i.e. not in simpler chains of nonlinearly coupled oscillators, characterized by an acoustic mode). The main idea of Aubry et al. was later revisited by Koukouloyannis & Ichtiaroglou [2002] who used a different continuation approach (based on a method dating back to the work of Poincaré; see in the latter Ref.). Technique (ii) does not imply such an assumption, and thus applies in acoustic lattices as well. A recent original formal proof of DB existence in FPU systems [James, 2001] is also worth noting.

In a general manner, the existence of DBs in a system relies on the condition:

\[n \omega_B \neq \omega(k), \quad \forall n \in \mathbb{N} \] \hfill (29)

implying the (physically transparent) constraint that the breather frequency \(\omega_B \) (and its multiples \(n\omega_B \)) should not enter into resonance with the linear frequency \(\omega(k) \) (a function of the wavenumber \(k \)); otherwise, breather localization and longevity is destroyed, since energy is inevitably distributed among a variety of linear modes.

7.1 Discrete localized oscillations in the transverse direction

Our basis will be Eq. (8), which governs transverse vibrations in our crystal. From first principles, the existence of DBs related to transverse grain vibrations in dust lattices seems to be an inevitable reality. First, the discrete TDLW dispersion relation (9) generally predicts a very narrow frequency band \([\omega_{T,\text{min}}, \omega_{T,\text{max}}]\), since the two limit frequencies \(\omega_{T,\text{max}} = \omega_g \) and \(\omega_{T,\text{min}} = (\omega_g - 4\omega_0^2)^{1/2} \) (see Fig. 4) are very close, in dust crystal experiments; e.g. \(\omega_g \simeq 155 \text{ sec}^{-1} \) and \(\omega_{T,\text{min}} \simeq 150 \text{ sec}^{-1} \) (derived from Fig. 3a in [Misawa, 2001]), viz. \(\omega_{T,0} \simeq 20 \text{ sec}^{-1} \); note that \(\omega_{T,0}^2/\omega_g^2 \simeq 0.016 \), implying a very weak coupling. The non-resonance condition (29) is therefore easily fulfilled, in principle. Now, the form of the on-site potential \(\Phi(z) \) defined in (3) – to be in principle provided by experiments – suggests a high anharmonicity, characterized by a finite cubic term (due to its obvious asymmetry (cf. Fig. 2); for instance, the experiment by Ivlev [2000] provides: \(\alpha/\omega_g^2 = -0.5 \text{ mm}^{-1} \) and \(\beta/\omega_g^2 = 0.07 \text{ mm}^{-2} \) (for a lattice spacing, say typically, of the order of \(r_0 \approx 0.5 - 1.5 \text{ mm} \)). Note that the damping coefficient \(\nu \) therein was very low: \(\nu/2\pi \simeq 0.067 \text{ sec}^{-1} \) and \(\omega_g/2\pi \simeq 17 \text{ sec}^{-1} \), so that \(\nu/\omega_g \simeq 0.004 \). Similar data can be obtained from [Zafiu, 2001; Liu, 2003], although the respective experiments studied single-grain oscillations (and thus provide no information e.g. on inter-grain coupling, under the given plasma conditions).

A first approach (to be extendedly reported elsewhere) relies on the discrete NLS (DNLS) equation [Eilbeck & Johansson, 2003], which can be derived from Eq. (8) in the weak-coupling
limit:

\[i \frac{du_n}{dt} + P (u_{n+1} + u_{n-1} - 2u_n) + Q |u_n|^2 u_n = 0, \]

(30)

where \(\delta z_n \) is assumed of the form \(\delta z_n \approx \epsilon u_n \cos \omega_B t + O(\epsilon^2) \) and the breather frequency is close to (and above) \(\omega_B \simeq \omega_g \); we have defined the smallness parameter \(\epsilon = \omega_T / \omega_g \), and

\[P = -\omega_0^2 / (2\omega_g) < 0, \quad Q = (10\alpha^2 / 3\omega_g^2 - 3\beta) / 2\omega_g. \]

(31)

See that \(P < 0 \). The sign of \(Q \), on the other hand, depends on the sheath characteristics and cannot be prescribed. As a very preliminary remark, existing experimental values for \(\alpha, \beta \) seem to suggest that \(Q > 0 \) (see e.g. the Ivlev values in §2.3 above above)\(^{11}\); bright (dark) DBs are thus intuitively expected to exist below (above) the linear frequency band.

This method was elegantly formulated in [Morgante, 2000]\(^ {12} \) and in preceding studies of standing waves in lattices [Kivshar & Luther-Davies, 1998], so that long known results may apply (upon modification to account for inverse dispersion). Although this is only an approximate approach to the problem, it captures the essential physics; this method describes the well-known tendency of nonlinear discrete systems towards energy localization via modulational instability [Kivshar & Peyrard, 1992; Daumont et al., 1997; Peyrard, 1998], which may possibly lead to the formation of either bright (see Fig. 14) or dark (see Fig. 15; cf. [Alvarez et al., 2001]) type ILMs with frequencies outside the linear TDLW band; see [Kourakis & Shukla, 2005]. Still, values for the nonlinearity parameters should be supplied by refined, appropriately designed experiments before any conclusions are drawn.

Figure 14: Localized DB excitations of the bright type (heuristic sketch): (a) odd-parity solution; (b) even-parity solution.

Figure 15: Localized DB excitations of the dark type (heuristic sketch): (a) black-type solution; (b) grey-type (phase-twisted) solution.

A more detailed study should incorporate a multi-mode description of transverse DBs [see Eq. (28)], via a refined analytical and numerical investigation. In specific, the requirements for (transverse) DB existence may be elegantly quantified via the frequency (square) ratio \(\epsilon \equiv \omega_0^2 / \omega_g^2 \), which qualitatively expresses the strength of the inter-grain (electrostatic) coupling in

\(^{11}\)Relying on these (preliminary) values, \(\Phi(z) \) comes out to be a soft potential, i.e. nonlinear oscillation frequency will tend to lower with amplitude.

\(^{12}\)see that \(\lambda \) therein is \(\sim -Q \) here.
comparison with the substrate potential-related (single grain) oscillation eigenfrequency (see the definitions above). The limit \(\epsilon \to 0 \), which defines the so-called anti-continuum limit [MacKay & Aubry, 1994; Aubry, 1997], as mentioned above, describes a chain of independent oscillators (trivial localized solution). Some of the studies which are on the way regard the existence of transverse multibreathers for finite \(\epsilon \) [Koukouloyannis & Kourakis, 2005], as well the exact numerical computation of such solutions via a sophisticated analytical and numerical method (which actually consists in searching for points of intersection among the homoclinic orbits in a multidimensional phase space) [Basios et al., 2005]. Furthermore, at a later step, one should add effects like damping (i.e. \(\nu \neq 0 \)) and coupling nonlinearities. These studies are on the way, and progress will be reported later.

7.2 Discrete localized oscillations in the longitudinal direction

As already mentioned, the longitudinal evolution Eq. (17) has long been studied in the context of FPU lattice theory. Following earlier pioneering works [Sievers & Takeno, 1988; Takeno & Sievers, 1988; 1989; Page, 1990] (also see in [Kiselev et al., 1995; Bickham et al., 1997] and Refs. therein), the existence of DBs in FPU chains was rigorously proven in [James, 2001]; see in [Sánchez-Rey et al., 2004; Flach & Gorbach, 2004] for two recent studies, establishing the existence of bright and dark breathers in FPU chains. According to James [2001], small amplitude breathers with frequency slightly above the phonon band will exist if

\[
B = \frac{1}{2} V''(0)V'''(0) - [V'''(0)]^2 > 0
\]

and will not exist otherwise. Now, expressing Eq. (17) as

\[
m \frac{d^2 \delta x_n}{dt^2} = V'(\delta x_{n+1} - \delta x_n) - V'(\delta x_n - \delta x_{n-1}),
\]

one comes up with the effective (horizontal) coupling potential

\[
V(y) = \frac{1}{2} \omega_L^2 y^2 - \frac{1}{3} a_{20} y^3 + \frac{1}{4} a_{30} y^4,
\]

which yields \(B = 3a_{30} \omega_L^2 - 4a_{20}^2 \) (see that \(B \) does not depend on the sign of \(a_{20} \)). Given the definitions of the coefficients \(\omega_L, a_{20} \) and \(a_{30} \) in our case (see in the Appendix), one may obtain \(B \) as a function of the dust lattice parameter \(\kappa \), and then study it numerically: a first numerical check provides a negative \(B \) (\(\forall \kappa \)), hence non-existence of DBs in a (Debye) dust crystal. Of course, this conclusion depends on the form of the potential and definitely deserves further investigation (left for a more detailed report).

8 Conclusions

We have reviewed various aspects regarding the nonlinear motion of charged particles (grains) in a (1d) dust mono-layer. We have shown that the self-modulation of lattice vibrations in either the transverse or longitudinal directions, due to the sheath and electrostatic coupling nonlinearity, may lead to modulational instability and to the formation of modulated envelope localized structures (envelope solitons). Furthermore, localized excitations (solitons) may propagate in the lattice; both compressive and rarefactive longitudinal excitations (kink-shaped solitons) are predicted by soliton theories via a continuum approach. Finally, discrete (breather-type) excitations (intrinsic localized modes) may in principle occur in both longitudinal and transverse directions, provided that their frequency lies outside the linear (harmonic) frequency band.
The existence and properties of these localized excitations may be investigated (and hopefully confirmed) by appropriately designed experiments.

Acknowledgments

The author (I. K.) would like to thank the organizers of the Autumn College on Plasma Physics: Collective Processes (5 - 30 September 2005) for their invitation, as well as the Abdus Salam International Center for Theoretical Physics (ICTP, Trieste, Italy), for its hospitality.

I (I.K.) am grateful to Prof. P.K. Shukla (Ruhr Universität Bochum, Germany), who has actually co-authored the published articles where this material was drawn from.

I am also indebted to Tassos Bountis (CRANS, Univ. of Patras, Greece), Sergej Flach (MPIPKS, Dresden, Germany) and Vassilios Koukouloyannis (AUTH, Thessaloniki, Greece) for many elucidating discussions on breathers; also to Vassilios Basios (ULB, Brussels, Belgium) and Bengt Eliasson (RUB, Bochum, Germany) for numerous discussions, technical help and more. Gianfranco Sorasio (IST, GOLP, Portugal) is gratefully acknowledged for providing the numerical data for Fig. 2. Stéphane Sonmeryn (U.L.B., C.P. 165/81, Brussels, Belgium) is acknowledged for technical support.

This work was supported by the SFB591 (Sonderforschungsbereich) – Universelles Verhalten gleichgewichtsferner Plasmen: Heizung, Transport und Strukturbildung German government Programme.
References

Note that \(\beta \) is of the order of unity in experiments (roughly, \(\kappa \approx 0.5 - 1.5 \)); therefore, all coefficients turn out to be of similar order of magnitude, as one may check numerically.

Let us retain, for later use, the characteristic dust lattice frequency scale \(\omega_0 \equiv [q^2/(M\lambda_D^3)]^{1/2} \) which naturally arises from the above definitions; in real experiments, this is of the order of XX Hz.