Übungsblatt 4

[Ausgabe: 08.05.2012; Abgabe: 15.05.2012]

Übungszettel im Netz unter http://www.tp4.rub.de/hat/

Aufgabe 9: Unschärferelation (15 Punkte)

Der Zustand eines Teilchens sei durch folgende Wellenfunktion beschrieben:

$$\Psi(x) = A \exp\left\{-\lambda(x-a)^2\right\} .$$

Hier sind $A, \lambda, a = const.$ und $\lambda > 0$.

- a) Bestimmen Sie die Normierungskonstante A.
- b) Bestimmen Sie die Erwartungswerte $\langle x \rangle$ und $\langle x^2 \rangle$ sowie $\langle p_x \rangle$ und $\langle p_x^2 \rangle$.
- c) Bestimmen Sie mit Hilfe von b) die die Standardabweichung $\sigma_x = \sqrt{\langle x^2 \rangle \langle x \rangle^2} \text{ und } \sigma_{p_x} = \sqrt{\langle p_x^2 \rangle \langle p_x \rangle^2}.$ Überprüfen Sie mittels der so berechneten Streuungen Δx und Δp_x die Heisenberg sche Unschärferelation.

Aufgabe 10: H-Atom im Grundzustand (8 Punkte)

Gegeben sei die Wellenfunktion des Grundzustands eines Elektrons im H-Atom:

$$\Psi(r) = \frac{1}{\sqrt{\pi}} \; a_0^{-\frac{3}{2}} \; \exp\left\{-\frac{r}{a_0}\right\} \; .$$

Hier ist r der Radius um den Atomkern und a_0 der Bohrsche Radius.

- a) Berechnen Sie den Erwartungswert für den Radius $r, \langle r \rangle$.
- b) Stimmt der erwartete Wert für den Radius mit dem von Bohr vorhergesagten Bohrschen Radius a_0 überein?
- c) Bestimmen Sie nun den Erwartungswert $\langle \frac{1}{r} \rangle$.
- d) Interpretieren Sie das Ergebnis physikalisch, insbesondere im Zusammenhang mit den von Bohr vorhergesagten Übergängen zwischen den Energieniveaus.

Hinweis: Allgemein gilt:

$$\int_0^\infty t^{x-1} e^{-t} dt = \Gamma(x).$$

Hierbei bezeichnet $\Gamma(x)$ die Gammafunktion.

Aufgabe 11: Eigenfunktionen und Eigenwerte (7 Punkte)

Gegeben seien folgende Wellenfunktionen:

$$\psi_1 = C_1 \exp\left\{-\frac{x^2}{2}\right\}$$
 und $\psi_2 = C_2 x \exp\left\{-\frac{x^2}{2}\right\}$

- a) Zeigen Sie, dass ψ_1 und ψ_2 Eigenfunktionen zum Operator $\hat{A} = x^2 \frac{d^2}{dx^2}$ sind und bestimmen Sie die jeweiligen Eigenwerte.
- b) Prüfen Sie, ob die Funktion $\psi = \psi_1 + \psi_2$ eine Eigenfunktion ist und erläutern Sie das Ergebnis.
- c) Erläutern Sie in jeweils einem Satz die physikalische Bedeutung von Operator, Eigenwert und Eigenfunktion.