Übung zur Theoretischen Physik IV

SS 2014

Ausgabe: 19. Mai 2014, Abgabe: 2. Juni 2014, 12 h Besprechung in den Übungsgruppen am 5./6. Juni 2014

4. Übungsblatt

Aufgabe 12: (5 Punkte)

a) Zeigen Sie, dass die Binomialverteilung $W_N(n) = \binom{N}{n} p^n (1-p)^{N-n}$ für $p \ll 1$ und $N \gg 1$ durch die Poissonverteilung

$$W_N(n) \approx \frac{\lambda^n}{n!} \exp(-\lambda), \qquad (\lambda = Np)$$

angenähert werden kann. Führen Sie dazu eine Grenzwertbetrachtung für große Stichprobenumfänge durch.

b) Zeigen Sie, dass die Binomialverteilung normiert ist. Verwenden und beweisen(!) Sie dazu den Binomialsatz mit vollständiger Induktion.

Aufgabe 13: (5 Punkte)

Berechnen Sie für die Gauß-Verteilung

$$\rho_g(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right)$$

und die Poisson-Verteilung

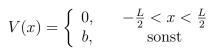
$$\rho_p(n) = \frac{\lambda^n}{n!} \exp(-\lambda), \qquad \lambda > 0$$

die folgenden Größen:

- a) Erwartungswert: $\langle x \rangle = \int_{-\infty}^{\infty} x \rho_g(x) \, \mathrm{d}x$ bzw. $\langle n \rangle = \sum_{n=0}^{\infty} \rho_p(n) n$,
- b) Standardabweichung: $\sigma_g = \sqrt{\langle x^2 \rangle \langle x \rangle^2}$ bzw. $\sigma_p = \sqrt{\langle n^2 \rangle \langle n \rangle^2}$,
- c) die charakteristische Funktion, die kumulantenerzeugende Funktion und die ersten beiden Kumulanten C_1 und C_2 .

Aufgabe 14: (5 Punkte)

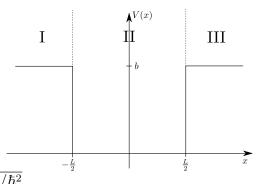
Betrachten Sie ein Teilchen der Masse m und der Energie E (0 < E < b), welches sich in einem Potential der Form



mit b = const. > 0 befindet.

- a) Lösen Sie die zeitunabhängige Schrödingergleichung für dieses System und bestimmen Sie die Quantisierungsbedingung für die Wellenzahl $k = \sqrt{2mE/\hbar^2}$.
- b) Geben Sie für den Fall $b \to \infty$ die stationären Eigenfunktionen $\psi_n(x)$ und deren Eigenwerte E_n an.

Tipp: Nutzen Sie zur Lösung der Schrödingergleichung die Stetigkeit von $\psi(x)$ und $\psi'(x)$ an den Stellen $x = \frac{L}{2}$ und $x = -\frac{L}{2}$ aus.



Aufgabe 15: (5 Punkte)

Finden Sie unter allen Verteilungsfunktionen f(x) mit vorgegebenem Erwartungswert $\langle x \rangle$ und vorgegebener Varianz σ^2 diejenige Verteilungsfunktion, welche die Entropie

$$S(f) = -k_B \int_{-\infty}^{\infty} f(x) \ln f(x) dx$$

extremal werden lässt. Um welche Verteilungsfunktion handelt es sich? Berechnen Sie schließlich noch die Entropie nach obiger Formel.

Tipp: Verwenden Sie Lagrange-Multiplikatoren für die Variation unter **drei** Nebenbedingungen und verwenden Sie letztere nachher, um umgekehrt die Lagrange-Multiplikatoren explizit zu bestimmen.