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1. Introduction

A plethora of works in Non-Equilibrium Statistical Mechanics have
been devoted to the study of the kinetic behaviour of large ensembles of
interacting particles, in an attempt to relate the macroscopic properties of
a system to the microscopic dynamics of its constituent particles. A com-
mon aim of such theories is the derivation of a kiretic equation, describ-
ing the evolution in time of a single-particle distribution function (d.f.) in
phase-space (i.e. a function fix, V; 1) of particle position and velocity).
Certain studies rely on a phenomenological description of particle colli-
sions (mostly related to stochastic mathematical theories) while others
adopt a more rigorous (kinetic-) theoretical approach, by taking as a start-
ing point either a hierarchy of coupled equations for reduced p-body
(=1, 2, 3, ..) distribution functions or formal projection-operator
methods [Balescu 1997].

The generic form of a kinetic equation is:
o o df

L 4v=+m'F

o ox Ezc{f}
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where x and v denote particle position and velocity variables, respective-
ly, F denotes the total force exerced on the particle. The collision term C
in the right-hand-side (rhs) accounts for particle interactions; it first
appeared in the original Boltzmann equation and has ever since been a
controversial subject in literature, since it is related to the irreversible
character of dynamics of matter,

A point that should be made is the following, Particle interactions are
in principle influenced by the physical parameters of the system (e.g. tem-
perature, density) and the existence of an external force field, since the lat-
ter may strongly modify particle trajectories between collisions. The colli-
sion term is a priori expected to depend on all these parameters and should
bear a form which takes into account, in particular, the exact effect of the
external field on particle dynamics. Curiously enough, the latter is simply
absent from most kinetic equations widely used in literature, such as the
celebrated Fokker-Planck equation (FPE) (derived from stochastic calcu-
lus) [Risken 1989], the Landau equation and the Balescu-Lenard-
Guernsey equation, both derived in the case of particles interacting
through weak long-range (e.g. electrostatic or gravitational) interactions
[Balescu 1997] or, finally, variations of the latter, meant to take into
account the field in the zeroth-order Liouville part, i.e. the left-hand-side
(ths) of the equation, but not in the collision term (see e.g. in [Balescu
1988]).

In the above framework, a case study of particular interest among sta-
tistical physicists consists of the relaxation of a small system towards ther-
mal equilibrium under the influence a large heat-bath (thermostat). Both
sub-systems may interact with one another and also with an external field
(if one is present). In earlier work of ours we have undertaken a study of
such a system, consisting of a charged test-particle moving against a ther-
malized background (plasma) [Kourakis 1999, 2000]. Starting from first
microscopic principles, a markovian FPE-type kinetic equation was
derived and analytical expressions for the coefficients were obtained.
Emphasis was made on the magnetic field dependence of the collision
integral, as well as the effect of non space-uniformity of the d.f, f{x, v; #).
This new equation was thus suggested as a basis for the study of plasma
kinetic properties (as compared, that is, to the standard (unmagnetized)
Landau description). The general formalism introduced in order to obtain
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those results may be applied in any specific weakly-coupled N-body sys-
tem, subject to an external field. The scope of this paper is to outline this
method, present a set of exact computable expressions for the diffusion
coefficients and actually point out their dependence on, among other
parameters, the external field.

2. The model

We consider a test-particle (t.p.) T surrounded by (and weakly inter-
acting with") a homogeneous background reservoir (N particles) assumed
in equilibrium. The weak interaction assumption implies a low ratio of
average potential to kinetic energy of the particle; this condition, which is
indeed fulfilled in a variety of real systems e.g. high-temperature plasmas,
stellar clusters etc., is technically’ necessary to obtain an evolution equa-
tion for the 1- particle d.f. by truncating the full N -particle Liouville, equa-
tion (see e.g. [Balescu 1997]).

The whole system is subject to an external field.
The equations of motion for the t.p. read:
dx . dv

— =F°(x,v) + AF

= ; ) >t
dt v df mt(X’V’XR ) (1)

where X= (x, v) = (xX, vZ) and X, = {Xj} = (Xj, vj) (= 12,..,N) denote
the coordinates of the test- and reservoir (R) particles respectively. The
force F©) is due to the external field. The interaction force F, (%, v; Xg; 1)
= —%ZVOX- X ,D (‘tagged’ by A), represents the sum of random

interactions between X and the heat bath.

We will assume that the zeroth-order (‘free’) problem of motion (i.e. (1)
for A = 0) in d dimensions (d = 1,2,3) yields a known analytic solution in

the form:
VO (1) = M Hx+N’()v

X0 = x + jo div(1') = M(Hx + N(H)v 2)
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with the initial condition {x, v} ={x©)(0), v®)(0)}. The form of the d x d
matrices {M(t), N(t)} depends on the particular aspects of the dynamical
problem taken into consideration and thus, definitely, on the external field.

For the sake of clarity, a few explicit examples are given in the following.
2.1. Example 1: Free motion

in the absence of external field, F©) = O in (1), so x(#) = x+vt, v(t) = v
= const. 1.e. M= 0, N,= 51.11 (so M;,i =O,N;.i =0, W7 L,....d)

i
2.1. Example 2: Harmonic Ostillator in 1 dimension

The force reads:

FO = - maty
and the solution to the single-particle equation of motion (1) reads:
x@ () =x cos @t +v @’ sin ot, v (1) = - xo sin ot + v cos of

which can be readily cast in the form of (2).

2.3. Example 3: Gyrating motion of a charged particle

Consider a charged particle (mass m, charge ¢) moving in a uniform mag-
netic field (along the z-axis); F(©) is now the Lorentz force: F, = ¢ (v x B);
the well-known (helicoidal) solution is exactly of the form of (2) where
N'(1) is a rotation matrix;

cosflr  sin€r O
N'(t)=R(r)=|—sinf2r cosQt 0
0 0 1

and N(7) = J; drt  R(t); Qis the gyroscopic frequency Q=gB/m.
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3. Kinetic description

The  test-particle’s  reduced  distribution  function  is
J(X,v;r) =I,p), = _[ r.dX,p > where p= p({X,XR};t) denotes the zotal
phase-space d.f, which is normalized to unity: f dXp = 1. Assuming inter-
actions to be weak (A << 1)and neglecting initial correlations, fis found to

obey a Non-Markovian Generalized Master Equation:

of of - af w (g X . A
S TVt ’F(“)gv— =+’ JO dr j dx,dv,LU(r) Ly, (Vl)_[ X, vyt =1,
3)

Where we use terminology and notions of Statistical Mechanics and
details can be found in relative textbooks; see for instance in [Balescu
1997].

Remember that /= f{x, v; 1),9, o Oy (v,) respectively denote the dis-
tribution functions of the test-particle and one (any) particle from the
(homogeneous) reservoir; 7 = N/V is the particle density; UP(1) denotes
the evolution operator (‘propagator”) involved in the formal solution of the
zeroth-order Liouville equation:fyt) = e f10) = U™ (1) /{0) finally, L is the
binary interaction Liouville operator:

L] :_Fim(r)(ii_—l— a j

where (r= |1 | =] X - X, b

Notice that the mean-field (Vlasov) term, obtained in A! , has disap-
peared in the Jhs, for reasons of symmetry (since the reservoir has been
taken to be uniform).

The above master equation is Non-Markovian (non-local in time),
since the value of /{¥) depends on its whole history, i.e. through f{#-r). A tra-
ditional ‘markovianization’ method consists in substituting with the
zeroth-order solution, i.e. assuming: f(t—r) =e " f()=U D-rrm ,
and then evaluating the kernel asymptotically i.e. taking the upper integra-
tion limit # to be co, This is a more or less standard procedure, leading to
time-independent coefficients.
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3.1. Homogeneous systems

For a homogeneous system , equation (3) thus takes the form of a (lin-
car) 2nd-order parabolic partial derivative equation in velocity space
[Kourakis 2002b]:

df ~112(0) of J 0’
o9 Y __ 2 D. 4)
AR il R Yk (

- This equation provides the generic form of the Fokker-Planck-type
kinetic equation obtained for any particular dynamical system. The diffu-
sion matrix D in it can be explicitly evaluated by making use of the Fourier
transform of the interaction potential ¥ ) @nd the zeroth-order trajectory
presented above:

rom

n ! ikArr
= ;17(2”)3Jo dr|dvg,,(v)] dk e™kk, VN, (7) (5)

(one is mostly interested in the asymptotic limit i.e. ).t— o The exponen-
tial: Ar = 1(t - T)can be exactly computed by making use of the solution (2)
of the problem of motion; in the case where M =1 (e.g. the first and third
of the examples mentioned above), it simplifies to:

Ar (1) =N (t)v - NI (T)v,

Note the explicit appearance of the external force field (through the N, N*
matrices). The drift vector F, represents a mechanism of dynamical friction
acting on the particle, due to collisions; it is given by:

m_dD, (6)

F=(0+—
= ml>8vj

3.2. Inhomogeneous systems

For a spatially inhomogeneous system, i.e. if f= f{x, v; t), the above
markovian approximation may lead to erroneous results, as argued in the
past [Tzanakis 1987], [Grecos 1988]; we shall not go into details in the
limited space provided here. See details in [Kourakis 2002b]. Let us only
mention that, adopting an alternative markovianization procedure devel-
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oped in the past in the context of open systems [Davies 1974], [Van-
Kampen 1992], one obtains a correct generalization of (4) which accounts
for diffusion in real (position) space as well velocity space. For instance,
in the case of magnetized plasma (see §2.3) we have obtained [Kourakis
1999]:

at FYR i mc( B) ov (a 2 +3 )][D(V)f] [D (V)f]

2 2 2 aZ
+29_I[858y aaa }[D (V)f]—thZ[D(“)( )](a—+§7jf

a J _
[F( )f1- [F Wf|-5-[Emr]+QF, (v) —f-QF, (v) S/
(7)
As an additional paradigm, considering the case of a chain of linear
oscillators (see §2.2 above) we have obtained:

0 a 82 az 2
5{;4— a]:c Dy af "‘(V)f]+ [Dvx(v)f]‘*‘ 2[Dxx(V)f]

a
—g[ﬂ(ﬂf]—g;[ﬂ@)f]_ (®)

All coefficients have been explicitly computed and will be reported
elsewhere [Kourakis 2002c]; they are omitted here for brevity.

4. Application to an electrostatic plasma.

Let us consider the case of a large ensemble of charged particles (plas-
ma), interacting through (long- range) electrostatic interactions. This is a
widely studied physical system, so a few comments relating the point we
want to make, here, to previous work are definitely imposed.

In the general kinetic-theoretical framework, this system is most often
described by the celebrated LANDAU kinetic equation, derived in 1936
for unmagnetized plasma (i.e. in no field) [Balescu 1963]. In the presence
of external fields, and namely for a uniform magnetic field (cf. §2.3), a
field-dependent collision term was later elaborated by a number of studies,
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¢.g. -to mention only a few -[Rostoker 1961] in the early 60°s, and also
[Haggerty 1967], [Schram 1969], [Montgomery 1974] and [Ghendrih
1987] more recently. Notice, however, that these studies have always
focused on the space-homogeneous case, either deliberately omitting or
neglecting (through physical arguments e.g. [Ghendrih 1987]) the space
inhomogeneity of the distribution function. It should also be noted that
these studies have treated the complete (intrinsically nonlinear) kinetic
problem, whereas our scope here was limited to the study of a test-particle
problem (as described above), in order to examine collisional relaxation
phenomena and their dependence on physical parameters. One thus
expects to gain in analytical tractability (since the background equilibrium
state is assumed to be known; see above), thus inevitably somewhat losing
in generality and validity range (yet not in rigor).

Focusing on the test-particle problem, unmagnetized plasma obeys a
linearized Landau equation of the form of (4) (cancelling the force in the
lhs and evaluating the rhs according to §2.1); this system has been exten-
sively studied in the past, so details can be found in literature. It is well-
known to exhibit a diffusive behaviour in velocity space and diffusion
coefficients are found to decrease with velocity (see figure 1). Since the
value of the diffusion coefficient is related to the inverse of the relaxation
time Ty, (i.e. the time the particle takes to relax towards thermal equilibri-
um [Montgomery 1963]), we see that faster particles take longer to relax.
Furthermore, a force of dynamical friction is exerced on the particle, its
magnitude depending on its velocity: F;, = -1 (v)v, In figures la, and b we
have depicted this behaviour, relying on the analytical data presented in
[Balescu 1963].

Now let us switch on a uniform external magnetic field. We saw that
this case is described by the (linear) kinetic equation (7), where coeffi-
cients are explicit functions of particle velocity and the field [Kourakis et
al. 2000]. A numerical study, based on formulae (5), (6) (as applied to the
dynamical problem in §2.3) reveals a similar qualitative behaviour versus
velocity, with a clear (yet rather not dramatic) dependence on the magni-
tude of the magnetic field. Rigorously speaking, as we already mentioned,
this is only true for the homogeneous case i.e. equation (4); see, for
instance, §37 in [Balescu 1963] and references made to the original works
therein. Expressions are too lengthy to provide here, yet details can be
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Figure 1: (a) Diffusion coefficient (normalized) and (b) the norm of the drift
vector F,= -1 (v)v; and the dynamical fiiction coefficient n(v) (normalized), ver-
sus particle velocity v (normalized over the thermal velocity) for an electrostatic
plasma in no external field (analytical data taken from [Balescu 1963]).
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Figure 2: (a) The perpendicular diffusion coefficient D, and (b) its || -counter-
part plotted against A (~1/B) , at different instants of t (cf. (5)). D, slightly increas-
es in time, yet only around A= 1(i.e.p, = ry,, above which it practically remains
constant. The field-dependence is smoothed out, as D ,. approaches the asympiot-
ic value for £2— 0 (dash-dot line).Dy| , on the contrary, comes out to be indepen-
dent of the field; this is reasonable, since Lorentz forces do not modify dynamics
parallel to the magnetic field, In the plot we have considered a temperature of
T'= 10KeV and a particle density of n = 1020m-3, implying: A = 4.531/B (B
expressed in Tesla) (according to definitions in [Kourakis2002a]).
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found in [Kourakis 2002a]. Let us only point out that the magnitude of all
coefficients in (7) comes out to depend on a dimensionless parameter relat-
ed to the Larmor radius to Debye length ratio, say A ~ p, /rpi.e. qualita-
tively speaking, to the relative magnitude of the gyration to interaction
mechanisms (as intuitively expected). The Debye sphere delimits the range
of electrostatic interactions when taking into account charge screening; see
e.g. [Balescu 1963]. Tracing the dependence of the D coefficient, for
instance, on the magnitude of the field B (via A ~1 / B) (see fig. 2), we see
that it is more important around p, = r,, and practically disappears for
lower values of the field (since particle trajectories in that parameter range
are less curved within a Debye radius -so the field is less important -as
more or less assumed in most studies) .

En résumé, as a priori expected, the field modifies the value of the
diffusion coefficients (it actually seems to favor relaxation, since it lowers
the value of the characteristic relaxation time 7, ~/ / D (Montgomery
1964]; cf. figure 2), yet only in the region where p, is comparable to or
slightly greater than 7, beyond that value, the influence of the field is
rather unimportant, as was in fact suggested by previous studies.

5. Conclusien

In conclusion, we saw that the Fokker-Planck-type collision term
describing a weakly-coupled N -body system depends on external fields
that may be present. Special attention should therefore be paid to the rig-
orous derivation of the kinetic equation, in order to take due account of the
field as well as spatial inhomogeneity effects.
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